Catchment planning and management

Objective
To assist the protection and restoration of catchments, water bodies, groundwater, and the marine environment.

Strategies
Ensure the continued availability of clean, high-quality drinking water by protecting water catchments and water supply facilities.

Consider the impacts of catchment management on downstream water quality and freshwater, coastal and marine environments.

Retain natural drainage corridors with vegetated buffer zones at least 30 metres wide along each side of a waterway to:
- Maintain the natural drainage function, stream habitat and wildlife corridors and landscape values,
- Minimise erosion of stream banks and verges, and
- Reduce polluted surface runoff from adjacent land uses.

Undertake measures to minimise the quantity and retard the flow of stormwater from developed areas.

Require appropriate measures to filter sediment and wastes from stormwater prior to its discharge into waterways, including the preservation of floodplain or other land for wetlands and retention basins.

Ensure that development at or near waterways provide for the protection and enhancement of the environmental qualities of waterways and their instream uses.

Ensure land use and development minimises nutrient contributions to water bodies and the potential for the development of algal blooms.

Require appropriate measures to restrict sediment discharges from construction sites.

Ensure planning is coordinated with the activities of catchment management authorities.

Policy documents
Consider as relevant:
- Any regional catchment strategy and related plans approved under the Catchment and Land Protection Act 1994
- State Environment Protection Policy (Waters of Victoria)
- Murray River Regional Environmental Plan No 2 (REP2) of New South Wales
- Planning permit applications in open, potable water supply catchment areas (Department of Sustainability and Environment, 2012)
- Any applicable implementation strategy approved by a catchment management authority or waterway management authority
- Any special area or management plan under the Heritage Rivers Act 1992
- Any action statement or management plan prepared under the Flora and Fauna Guarantee Act 1988
- Urban Stormwater - Best Practice Environmental Management Guidelines (Victorian Stormwater Committee, 1999)
Water quality

Objective

To protect water quality.

Strategies

Protect reservoirs, water mains and local storage facilities from potential contamination.

Ensure that land use activities potentially discharging contaminated runoff or wastes to waterways are sited and managed to minimise such discharges and to protect the quality of surface water and groundwater resources, rivers, streams, wetlands, estuaries and marine environments.

Discourage incompatible land use activities in areas subject to flooding, severe soil degradation, groundwater salinity or geotechnical hazards where the land cannot be sustainably managed to ensure minimum impact on downstream water quality or flow volumes.

Prevent the establishment of incompatible land uses in aquifer recharge or saline discharge areas and in potable water catchments.

Encourage the siting, design, operation and rehabilitation of landfills to reduce impact on groundwater and surface water.

Use the mapped information available from the Department of Environment, Land, Water and Planning to identify the beneficial uses of groundwater resources and have regard to potential impacts on these resources from proposed land use or development.

Policy documents

Consider as relevant:

- *Construction Techniques for Sediment Pollution Control* (Environment Protection Authority, 1991)

- *Environmental Guidelines for Major Construction Sites* (Environment Protection Authority, 1996 - Publication 480)

- *Doing it Right on Subdivisions: Temporary Environmental Protection Measures for Subdivision Construction Sites* (Environment Protection Authority, 2004 - Publication 960)

- *Planning permit applications in open, potable water supply catchments* (Department of Sustainability and Environment, 2012)